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Mass transport in a parabolic conduit
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Abstract—The local concentration is determined for a viscous liquid flowing through a parabolic conduit.

The concentration at the parabolic wall is considered constant, as is the initial concentration at the inlet.

The liquid flow is considered as creeping flow and its velocity distribution is determined by solving the

biharmonic equation of the streamfunction. The local concentration is evaluated numerically from the
analytical results for various parabolic conduits.

1. INTRODUCTION

For THE past century the heat and mass transport
problem with the inclusion of convection has received
considerable attention. The transport of heat or con-
centration of a material in a liquid has been inves-
tigated in conduits and tubes for plug and laminar
flow by Graetz, Nusselt and others [1-6]. In all these
investigations the geometry of the system was such,
that the cross-section of the conduit or tube did not
change. The partial differential equation describing
the problem could be separated and the remaining
ordinary differential equation with usually varying
coefficients had to be solved by some numerical
method, which usually was performed by applying
the Runge—Kutta procedure. In some cases an exact
analytical solution could be obtained by proper trans-
formation of the ordinary differential equation into
the confluent hypergeometric equation. In other cases
the Galerkin procedure leads to very good approxi-
mations. This method was used by the author for the
treatment of the problem for a non-Newtonian liquid
of the Ostwald—de-Waele type [7-9]. In some con-
figurations, however, the cross-sectional area changes,
such as in a diverging straight line conduit or a conical
tube. These cases were also treated by the author
[10, 11]. The following investigation treats the mass
transport in a conduit, in which the cross-sectional
area changes according to parabolic walls, i.e. the
walls are not represented by straight lines, but by
parabolas, at which the wall concentration c,, is con-
sidered constant. Viscous creeping flow will be used
flowing in the £-direction and exhibiting only the vel-
ocity component #(&, #) in this direction.

2. BASIC EQUATIONS AND SOLUTION

For the determination of the local concentration of
a component in a moving viscous liquid in a conduit
or tube with a completely developed velocity profile,
the following second-order partial differential equa-
tion has to be solved :

DAc—v-grade =0 1)

where D is the diffusion coefficient, ¢ the local con-
centration and v the velocity of the liquid. For a para-
bolic conduit, i.e. a system with a parabolically chang-
ing cross-section the equation, that has to be solved
is given by

D e uEm d_.

@+’ o JE4n?) 0
where molecular diffusion in the flow direction & has
been neglected in comparison to the convectional part.

This partial differential equation has to be solved with
the boundary condition

¢ = ¢, at the wall of the conduitn =1n, (3a)
and the initial condition
¢=cattheinlet £ = ¢, (3b)

where ¢, and ¢; are constants. The parabolic coor-
dinate £ and # relate to the Cartesian coordinates x
and y by

x=2¢&, y=3(¢"—n%)

and the lines £ = const. and 5 = const. both represent
parabolas, which are orthogonal to each other (Fig. 1).

2.1. The flow problem

The viscous flow of a homogeneous and incom-
pressible Newtonian liquid in a parabolic conduit is
treated, for which 5 = #, is chosen as its wall. Since
the liquid adheres to the wall, n = », is a streamline
¥ (n,), indicating, that its normal velocity vanishes.
¥ is the streamfunction. In addition the tangential
velocity 0W/0y should vanish at the wall 5 = 7,.
Therefore, it is

ik g
o =0 at the wall n = 7,. 4

From the continuity equation and streamfunction one
obtains
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¢ concentration

¢, concentration at the wall of the
conduit

¢; concentration at the inlet

D  diffusion coefficient

confluent hypergeometric function

u  flow velocity of viscous liquid in the
¢-direction

NOMENCLATURE

V, volumetric flow.

Greek symbols
v, ecigenvalues, y2 = 3V A%y, /4D
ne  wall of parabolic conduit
&, n parabolic coordinates
&, inlet of parabolic conduit
¥ streamfunction.

oW /on
\/(f 2+n?)
where W is only a function of 7, 1.e. W = ¥(y). It is
v = ue;+ve,, with v = 0.

The axis of the conduit # = 0 is also a streamline
expressing

(%

W(0) =0 foryn=0. (6)

Linearized (creeping) flow thus requires the solution
of the biharmonic equation of the streamfunction

AY =0 N

with the above boundary conditions (4) and (6), as
well as the volumetric flow condition

Vo= 2J; D\/(éz+n2)u(é, 1) dn. ®)

The operator A is given by

Ao L [iz 6_]
NGET I

d?/dy’
AY = 5T
&*+n?)
the expression
. 1 0° * |d*¥/dn?
qu = —a— —= — |l = U.
(€2+n2)[5€2+5n2](52+n2) O

Performing the necessary evaluation of this equation
and observing the fact that the streamfunction is only
a function of the coordinate n renders as coefficients
of £% &2 and the ¢-independent term that ordinary
differential equations for ¥ which has to be satisfied
simultaneously. They are

d*y LAWY
and

AW Y A

Tayt T e T T T

The solution ¥ satisfying all three of them is given by

and yields applied again on Y(n) = édn’+Bn+C (10)
3.0
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F1G. 1. Geometry and parabolic coordinates &, #.
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which after introduction of conditions (4), (6) and (8)
renders

Vo o »
Y(n) = 4—,7(3)[3110?/-?13]- 11)

The velocity distribution is therefore given with equa-
tion (5) as

3V, (mi—n?)
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2.2. The mass transport problem
With the introduction of the velocity u(¢,n) into

equation (2) we obtain the partial differential equation
3 26’ 3 Vo 2 2 c
W—m(ﬂo—ﬂ )6_6_ (13)

for the determination of the local concentration
c(¢, ). Transforming with

ulon) =5 5T o (12)
s JE+n?) e—e
_ ¥ = C(&,n) = Cly)e V¢~ 14
and is presented in Fig. 2. ¢ —Cy ©n) (e ’ a4
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F1G. 2. Velocity distribution along and across the conduit.
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¥i16. 2.—Continued.

and introducing n/ne = { and y* = 3V,4%,/4D, one
obtains the ordinary differential equation

dZ

a + 72 (1={HC=0 (15)
which after transformation with
p?=z and C=¢e"72f(2) (16)

renders the confluent hypergeometric differential
equation

dzf as

rgat+ G- g —-nS=0 a7

exhibiting the solution (because of symmetry and the
condition dC/dy = 0 atn = 0 only | F, has been used)

f@=aFi(G(=y). 35 2) (18a)
where , F, is the confluent hypergeometric series

rpre+4i) z*

Frle, By 2) = ZT(&)F(}‘H-A) o (18b)

The concentration therefore will be given by

() = cut(c—ey) 3 Eye™ 02

n=1

2
x 1F1<§(1 —7,), ;;”.Z)e—woaill"ona)y&(évm (19)
Hs
where 7, are the eigenvalues, as obtained from con-
dition (3a), i.e. C(n,) =0 or
FLGG(1—y), 3:9) =0 (Tablel) (20)

and where constants E, have to be determined from
initial condition (3b), i.e. C(y) = 1 at the inlet £ = ;.
This yields

S ECOH =1

C({) being the function of #/n, = { in equation (19).
From equation (15) one obtains in the usual way
the orthogonality relation of C,, i.e.

L (1={HCDCAD AL

Table 1. Eigenvalues y, of the
hypergeometric confluent function
PG, p) =0

=
-~

1 1.6816
2 5.6699
3 9.6682
4 13.6677
5 17.6674
6 21.6672
7 25.6671
8 29.6670
9 33.6670
10 37.6669
I 41.6669
12 45.6669
13 49.6668
14 53.6668
15 57.6668
16 61.6668
17 65.6668
8 69.6668
19 73.6668
20 77.6668
21 81.6668
22 85.6668
23 89.6667
24 93,6667
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0 form#n
=1.1 96 9, form=n @h
2?7: ayn ac {=1 )
Constants E, are therefore
1
L 1-3)CO &
E ==
L (1-{HCxDdg
which is with equation (21) and
! dC,
J (1-HCOd =-—MMHn (2
o dZ
given by
2
E=——"—"—— 23
i, @3)
Y dyn (=1

Result (22) has been obtained from the integration
of differential equation (15), observing that dC,
d¢(0) =0, i.e. symmetry of the concentration pro-
file across the axis # = 0 of the conduit. The deri-
vation of 6C,/dy, yields with

Ca0) = e~V P [3(1=7,), 45 7.L%]

the expression

(24)

6C,,(J) _ 2 — (12,8
o — 3 CaQ)+em Pk
& BA—=3)L@ad) {1_"-' 1 }
XL ST
(29)
With

d a
&[1171(‘1»6',2)] = lel(a+l,c+1,z)

one obtains with equations (20) and (24)

aC,
S W = e R A=) Fi (G, B Q9)

With these results the orthogonality condition and
the integration constants E, are given. If the initial
condition were not a constant, but a function of n the
solution could be obtained in a similar way.

3. NUMERICAL EVALUATION AND
CONCLUSIONS

The velocity distribution and the local concen-
tration have been numerically evaluated for various
parabolic conduits 5, and at various coordinate
lines £;. In Figs. 2(a)~(c) the velocity distribution
u(&,n)/V, is presented in magnitude and direction.
For a slowly increasing cross-section #, = 0.4 the vel-
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Fi1G. 3. Local concentration for constant wall and initial
concentration.
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ocity distribution is shown in Fig. 2(a) (see equation
(12)). The velocity distribution is a function of both
coordinates £ and # and decreases along increasing ¢&.
The arrows indicate by their lengths the magnitude of
the local velocity vector and show in addition the
direction of the flow. The unity of the magnitude of
u(&,m)/Vo[m™'] is shown on the upper right of Fig.
2(a). The velocity decreases with increasing ¢-value
and increasing n as well. For a wider conduit 5, = 0.7
and 1.0 the velocity distribution per unit volumetric
flow is presented in Figs. 2(b) and (¢}, in which the
magnitude of u(¢, n)/V, is becoming smaller for larger
#o, i.€. conduit width. The local concentration (equa-~
tion (19)) is presented in Figs. 3(a)~(c) for the same
conduits #, =04, 0.7 and 1.0. The initial con-
centration at the inlet & = &, was chosen to be of
constant magnitude ¢, across the conduit cross-section
¢ = &, Figure 3(a) shows the local concentration
(c—cw)/(ci—cy) for a slowly increasing cross-section
of the conduit, i.e. for 5y = 0.4, At the inlet &, = 0.4
the initial concentration was given as c=c¢ =
constant. The magnitude of the concentration ratio
{(c—c,}/{c;—c,,) is exhibited on the left-hand side of
the graph. It may be noted that the magnitude of this
ratio decreases with increasing & and #. Its magnitude,
of course, depends on the magnitude of the parameter
4D/3V 4, for which the values 0.5 and 1.0 have been
used. An increase of the volumetric flow ¥, renders
a decrease of this parameter and therefore a larger
concentration, while an increase of the diffusion
coefficient D yields a smaller concentration. Figure
3(b) exhibits the local concentration for a wider para-
bolic conduit, i.e. 174 = 0.7. The inlet was chosen to be
at £, = 0.7. For an even wider conduit #4 = 1.0 with
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the inlet at £, = 1.0 the results for the concentration
are presented in Fig. 3(c). The upper curve is the local
concentration for 4D/3V gy, = 0.5, while the lower
curves are the results for 4D/3¥ g, = 1.0,
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TRANSPORT DE MASSE DANS UN CONDUIT PARABOLIQUE

Résumé-—La concentration locale est déterminée pour un liquide visqueux s’écoulant & Pintérieure d’un

conduit parabolique. La concentration 4 la paroi est supposée constante, ainsi que la concentration initiale

aentrée. L écoulement liquide est supposé rampant et sa distribution de vitesse est déterminée en résolvant

Péquation biharmonique de la fonction de courant. La concentration locale est évaluée numériquement a
partir des résultats analytiques pour différents conduits paraboliques,

STOFFTRANSPORT IM PARABOLISCHEN KANAL

Zusammenfassung—Es wird die lokale Konzentration in einer viskosen Stromung durch einen para-

bolischen Kanal bei konstanter Wand- und EinlaBkonzentration bestimmt. Die kriechende Stro-

mungsgeschwindigkeit wurde aus der Losung der biharmonischen Differentialgleichung der Stromfunktion

bestimmt. Die lokale Konzentration wurde aus den analytischen Ergebnissen fiir einige Parabolkanile
numerisch bestimmt.

TTEPEHOC MACCHI B KAHAJIE ITAPABOJIMUECKOI'O CEYEHHWA

AmnoTamms-—Onpeaesiena JIOKaNbHAs KOHUSHTPALMA BA3KOH MMIKOCTH [P TEYEHHH B Kanae mapabo-

JIMYeCKOro cevenus. KOHUEHTPANUMS KUAKOCTH HA CTEHKE KaHa/la M HAyajIbHad KOHUECHTPAUMA HA BXONE

CYMTAIOTCA IOCTOSHHBIMU. TeueHue NPOMCXOMMT B NOJ3YLIEM pexume. Pacnipenenenue cKOPoOCTR omnpe-

AeAseTCH peleHHeM GHUrapMOHMYECKOrO YpaBHEHHA AAS GYHKIMH TOKA, a JIOKAJIBHAN KOHUCHTpALMA

OLICHABAETCA YHCACHHO HA OCHOBE aHAIMTHYECKHX DE3YILTATOB, NONYYEHHBIX IUIf pasjmuHbix napabo-
JIMYECKHX KAHAJIOB.



