
ht. J. Heat Mass Transfer. Vol. 31, No. IO, pp. 1999-2004, 1988 
Printed in Great Britain 

0017-9310/88 $3.OO+O.Otl 
0 1988 Pergamon Press plc 

Mass transport in a parabolic conduit 
HELMUT F. BAUER 

Universitlt der Bundeswehr Miinchen, Institut fiir Raumfahrttechnik, Werner-Heisenberg-Weg 39, 
8014 Neubiberg, Federal Republic of Germany 

(Received 26 January 1988) 

Abstract-The local concentration is determined for a viscous liquid flowing through a parabolic conduit. 
The concentration at the parabolic wall is considered constant, as is the initial concentration at the inlet. 
The liquid flow is considered as creeping flow and its velocity distribution is determined by solving the 
biharmonic equation of the streamfunction. The local concentration is evaluated numerically from the 

analytical results for various parabolic conduits. 

1. INTRODUCTION 

FOR THE past century the heat and mass transport 
problem with the inclusion of convection has received 
considerable attention. The transport of heat or con- 
centration of a material in a liquid has been inves- 
tigated in conduits and tubes for plug and laminar 
flow by Graetz, Nusselt and others [ld]. In all these 
investigations the geometry of the system was such, 
that the cross-section of the conduit or tube did not 
change. The partial differential equation describing 
the problem could be separated and the remaining 
ordinary differential equation with usually varying 
coefficients had to be solved by some numerical 
method, which usually was performed by applying 
the RungeKutta procedure. In some cases an exact 
analytical solution could be obtained by proper trans- 
formation of the ordinary differential equation into 
the confluent hypergeometric equation. In other cases 
the Galerkin procedure leads to very good approxi- 
mations. This method was used by the author for the 
treatment of the problem for a non-Newtonian liquid 
of the Ostwald-de-Waele type [7-91. In some con- 
figurations, however, the cross-sectional area changes, 
such as in a diverging straight line conduit or a conical 
tube. These cases were also treated by the author 
[lo, 111. The following investigation treats the mass 
transport in a conduit, in which the cross-sectional 
area changes according to parabolic walls, i.e. the 
walls are not represented by straight lines, but by 
parabolas, at which the wall concentration c, is con- 
sidered constant. Viscous creeping flow will be used 
flowing in the l-direction and exhibiting only the vel- 
ocity component u(r, q) in this direction. 

2. BASIC EQUATIONS AND SOLUTION 

For the determination of the local concentration of 
a component in a moving viscous liquid in a conduit 
or tube with a completely developed velocity profile, 
the following second-order partial differential equa- 
tion has to be solved : 

DAc-v-grade = 0 (1) 

where D is the diffusion coefficient, c the local con- 
centration and v the velocity of the liquid. For a para- 
bolic conduit, i.e. a system with a parabolically chang- 
ing cross-section the equation, that has to be solved 
is given by 

where molecular diffusion in the flow direction r has 
been neglected in comparison to the convectional part. 
This partial differential equation has to be solved with 
the boundary condition 

c = c, at the wall of the conduit q = q,, (Ja) 

and the initial condition 

c = ci at the inlet 5 = lo (3b) 

where c, and ci are constants. The parabolic coor- 
dinate 5 and q relate to the Cartesian coordinates x 
and y by 

x=&f% Y=:(5*+) 

and the lines c = const. and q = const. both represent 
parabolas, which are orthogonal to each other (Fig. 1). 

2.1. Theflow problem 
The viscous flow of a homogeneous and incom- 

pressible Newtonian liquid in a parabolic conduit is 
treated, for which q = TV,, is chosen as its wall. Since 
the liquid adheres to the wall, 1 = q,, is a streamline 
Y(qO), indicating, that its normal velocity vanishes. 
Y is the streamfunction. In addition the tangential 
velocity aY& should vanish at the wall q = q,,. 
Therefore, it is 

av 
- = 0 
all 

at the wall q = qO. (4) 

From the continuity equation and streamfunction one 
obtains 
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NOMENCLATURE 

c concentration 

c, concentration at the wall of the 
conduit 

c, concentration at the inlet 
D diffusion coefficient 
, F, confluent hypergeometric function 

flow velocity of viscous liquid in the 
l-direction 

ri,, volumetric flow. 

Greek symbols 

“r’,, eigenvalues, 7’ = 3 ~ioJ.2qo/4D 

fl0 wall of parabolic conduit 
{, q parabolic coordinates 

<,I inlet of parabolic conduit 
Y streamfunction. 

awall 
u- 

J(5’+r’) 
(5) 

where Y is only a function of r~, i.e. Y = Y(q). It is the expression 
v = uec + ve,, with v = 0. 

The axis of the conduit q = 0 is also a streamline A+ = - 
expressing 

(&j[$+$]$~;=O. (9) 

Y(0) = 0 for rj = 0. (6) Performing the necessary evaluation of this equation 

Linearized (creeping) flow thus requires the solution and observing the fact that the streamfunction is only 

of the biharmonic equation of the streamfunction a function of the coordinate q renders as coefficients 
of t4, <* and the c-independent term that ordinary 

A2Y = 0 (7) differential equations for Y which has to be satisfied 

with the above boundary conditions (4) and (6), as simultaneously. They are 

well as the volumetric flow condition d4Y 

p’o = 2 ;0j(S2+~2)u(C,$d~. 
s 

7=0, 92d?_2~d?VI+*d2yl=0 
dq dq“ dq3 drj2 

(8) 
and 

The operator A is given by 

A+&$+$] 

4 
&?_4$Y+4E=O. 

d$ dq3 dr/’ 

The solution Y satisfying all three of them is given by 

and yields applied again on Yoj) = $t~3+Brl+C (10) 

-2.4 -0.8 0.8 2.4 4.0 
FIG. 1, Geometry and parabolic coordinates 5,~. 
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which after introduction of conditions (4), (6) and (8) 2.2. The mass transport problem 

renders With the introduction of the velocity u(&q) into 

_*_ equation (2) we obtain the partial differential equation 

WV) =$34:fl-131. (11) 
0 

The velocity distribution is therefore given with equa- 

d2c 3J70 
--F- 
as 

m Wrl’P = 0 
at 

(13) 

tion (5) as for the determination of the local concentration 

and is presented in Fig. 2. 

(12) 
c(& q). Transforming with 

C-C, - z C(& q) = C(q) e-12(c-~0) 
c,-c, 

(14) 

(a) 

lb) 

3.0 

2.0 

1.0 

0.0 
-2.0 -1 .o 0.0 1 .o 

FIG. 2. Velocity distribution along and across the conduit. 
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FIG. 2.-Continued. 

and introducing n/u0 = [ and y* = 3~0A2r,r0/4D, one 
obtains the ordinary differential equation 

d2C 
v + y2(1 -i”)C = 0 (15) 

which after transformation with 

y<’ = z and C = e-“‘f(z) (16) 

renders the confluent hypergeometric differential 
equation 

Zd2S+(~_$L_ ‘(I--y)f=O 
dz2 dz 4 (17) 

exhibiting the solution (because of symmetry and the 
condition de/d? = 0 at q = 0 only , F, has been used) 

f(z) = a,F,(L,(l-y). :; z) (lga) 

where 1 F, is the confluent hy~rgeomet~c series 

The concentration therefore will be given by 

c(& q) = c, + (c, -c,) f E, e-(~.!‘)@/@ 
II= 1 

x ,F1 
c 

i q2 
i(l-rd,~:~ e- 

> 
(4Doi3~,%tu.2~i:-50) (19) 

where yn are the eigenvalues, as obtained from con- 
dition (3a), i.e. C(qo) = 0 or 

,F,($(l -y), f; y) = 0 (Table 1) (20) 

and where constants Em have to be determined from 
initial condition (3b), i.e. C(n) = 1 at the inlet { = TW 
This yields 

C,,(c) being the function of q/t,, = [ in equation (19). 
From equation (15) one obtains in the usual way 

the orthogonality relation of C,, i.e. 

Table 1. Eigenvalues yn of the 
hypergeometric confluent function 

,F,ta(l-Y,,, ii?%) = 0 
-.- ____~.. __ ____ ~__ 
n 7n 

1 1.6816 
2 5.6699 
3 9.6682 
4 13.6677 
5 17.6674 
6 2 1.6672 
7 25.6671 
8 29.6670 
9 33.6670 

10 37.6669 
11 41.6669 
12 45.6669 
13 49.6668 
14 53.6668 
15 57.6668 
16 61.6668 
17 65.6668 
18 69.6668 
19 73.6668 
20 77.6668 
21 81.6668 
22 85.6668 
23 89.6667 
24 93.6667 
25 97.6667 
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‘0 form#n 

I ac ac -n-l! form=n. 
I 

(21) 

Constants E,, are therefore 

s I(1 -~*WO dC 
E” = O, s (1 -l*)C,z(O & 

0 

which is with equation (21) and 

I dG 
(1-5*PX)dT = - d5-(lY~; (22) 

given by 

2 
E,, = - 

dC, ’ 
(23) 

YndYn I=1 

Result (22) has been obtained from the integration 
of differential equation (15), observing that dC,, 
d[(O) = 0, i.e. symmetry of the concentration pro- 
file across the axis q = 0 of the conduit. The deri- 
vation of aC,/aY,, yields with 

C.(c) = e-(1i2)y*~* ,F,[:(l-Y,), 4; ml21 (24) 

the expression 

aa4 _ = _ f[2C,([)+e--(‘/Z)tC2 
aYn 

x 2 rau -Y.)1”(Y~~‘)’ 

{ 

v “-I -- 
Y= I (kvl Yn j?o(l-Y:+4J. 

With 

(25) 

$IJ,(o,c,z)l =~,F,(o+l,c+l,z) 

one obtains with equations (20) and (24) 

!$(l) = e-y=‘2Y,(l-Y,),Fi(#-Y,), 4; Y.). (26) 

With these results the orthogonality condition and 
the integration constants E,, are given. If the initial 
condition were not a constant, but a function of tl the 
solution could be obtained in a similar way. 

3. NUMERICAL EVALUATION AND 
CONCLUSIONS 

The velocity distribution and the local concen- 
tration have been numerically evaluated for various 
parabolic conduits ‘to and at various coordinate 
lines rj. In Figs. 2(a)-(c) the velocity distribution 
u(&~)/ri, is presented in magnitude and direction. 

0. I \/t\cr*=Qd 
-I .o -0.5 -0.2 0.2 0.5 

3. 

'I,= 0.7 
I 

0. ” 
-2.5 -1.5 -0.5 0.5 1.5 

(a) 
0 

0-G 
'LO 

(c) 
!.5 

FIG. 3. Local concentration for constant wall and initial 
For a slowly increasing cross-section q. = 0.4 the vel- concentration. 
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ocity distribution is shown in Fig. 2(a) (see equation 
(12)). The velocity distribution is a function of both 
coordinates < and q and decreases along increasing 5. 
The arrows indicate by their lengths the magnitude of 
the local velocity vector and show in addition the 
direction of the flow. The unity of the magnitude of 
~(5, s)/pO [m-l] is shown on the upper right of Fig. 
2(a). The velocity decreases with increasing t-value 
and increasing ‘1 as well. For a wider conduit no = 0.7 
and 1.0 the velocity ~st~bution per unit volumetric 
flow is presented in Figs. 2(b) and (c), in which the 
magnitude of u(<, q)/p,, is becoming smaller for larger 
qO, i.e. conduit width. The local concentration (equa- 
tion (19)) is presented in Figs. 3(a)-(c) for the same 
conduits q0 = 0.4, 0.7 and 1.0. The initial con- 
centration at the inlet < = <, was chosen to be of 
constant magnitude c, across the conduit cross-section 
< = t,,. Figure 3(a) shows the local concentration 
(c - c,)/(c, - c,) for a slowly increasing cross-section 
of the conduit, i.e. for q,, = 0.4. At the inlet to = 0.4 
the initial concentration was given as c = c, = 
constant. The magnitude of the concentration ratio 
(c-c,)/(ci-c,) is exhibited on the left-hand side of 
the graph. It may be noted that the magnitude of this 
ratio decreases with increasing { and r7. Its magnitude, 
of course, depends on the magnitude of the parameter 
4013 vOnO, for which the values 0.5 and 1 .O have been 
used. An increase of the volumetric flow r’, renders 
a decrease of this parameter and therefore a larger 
concentration, while an increase of the diffusion 
coefficient D yields a smaller concentration. Figure 
3(b) exhibits the local concentration for a wider para- 
bolic conduit, i.e. ‘lo = 0.7. The inlet was chosen to be 
at to = 0.7. For an even wider conduit q,, = 1.0 with 

the inlet at tl, = 1.0 the results for the concentration 
are presented in Fig. 3(c). The upper curve is the local 
concentration for 4D/3t,g, = 0.5, while the lower 
curves are the results for 4D/3 po~O = 1 .O. 
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TRANSPORT DE MASSE DANS UN CONDUIT PARABOLIQUE 

R&n&--La concentration locale est diterminee pour un liquide visqueux s’tcoulant a l’interieure dun 
conduit parabolique. La concentration $ la paroi est supposee co&ante, ainsi que la concentration initiale 
a l’entree. L’ecoulement hquide est suppose rampant et sa distribution de vitesse est determinee en resolvant 
I’iquation biha~on~que de La fonction de courant. La concentration foeale est ivaluee nam~riquement a 

partir des resultats analytiques pour differents conduits parabohques. 

STOFFTRANSPORT IM PARABOLISCHEN KANAL 

Z~~f~g-Es wird die iokale Konzentration in einer viskosen Str~mung durch einen para- 
bohschen Kanal bei konstanter Wand- und EinlaBkonzentration bestimmt. Die kriechende Strii- 
mungsgeschwindigkeit wurde aus der L&sung der biharmonischen Differentialgieichung der Stromfunktion 
bestimmt. Die lokale Konzentration wurde aus den analytischen Ergebnissen fur einige Parabolkanale 

numerisch bestimmt. 

I-IEPEHOC MACCM B KAHAJIE ~APABO~~~ECKOrO CErIEHHX 

AnuoXonisa--Qnpenenetia noxanbuaa rconuenrpanna ens~oii ~ofntcocrn npu Te~ennn n uamure napa60- 
nnnecXoro cenemia. Konnenrpannn ncnmoacr~ Ha crenXe Xana.na a iiananbrian Xoriueirrpamin na axone 
CnUTaroTCa nOCTOIIHHbIMB. Teseme nponcxo~n~ B non3yuleM peXcnMe. PacnpeneJIeHne c~opoc~n onpe- 
nenaeT0i penrerineM 6arapMomiueeXoro ypaenennn ana &rncmi~ Torca, a nomirrbiiaa Xounee~pannr 
oneriwnaercn 4ncnenno na ocrione anansi~siuecmix pesynbraron, nonyxemibrx n_nr pa3nrvnibtx napa6o- 

JIn’1eCKnX KaHaJIOB. 


